Code No.: 22666

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

M.E. (E.C.E.) II-Semester Main Examinations, August-2023

CPLD & FPGA Architectures and Applications (PE-III)

(Embedded Systems & VLSI Design)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PC
1.	Find the number of address lines and number of ou put lines does the 1024 × 8 PROM device support.	2	2	1	3
2.	The size of a PLA device is specified with 3×8×4. What does each dimension specifies?	2	1	1	3
3.	Draw the architecture block diagram of a PAL device.	2	1	2	3
4.	List the Simple Programmable Logic Devices (SPLI)s).	2	1	2	3
5.	Distinguish between PAL and PLA devices.	2	2	2	3
6.	List the applications of Programmable Logic Devices (PLDs)	2	1	2	3
7.	Find the number of 2×1 Muxes required to realize 2-input LUT.	2	2	3	4
8.	Find the number of 4-input LUTs required to realize 7-input LUT. Also find the number of 2×1 Muxes required.	2	2	3	4
9.	Distinguish between EPROM and EEPROM.	2	2	4	3
10.	What is the function of product term allocator in CPLD architecture?	2	1	4	3
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
1. a)	The following logic functions are to be implemented using a PLA device.	4	3	1	1
	$F_0 = A\overline{C} + AB, F_1 = A + \overline{B}\overline{C}, \qquad F_2 = \overline{B}\overline{C} + AB, F_3 = \overline{B}C + A$	1,8			
	Calculate the hardware cost in terms of number of inverters, buffers, AND gates and OR gates required.				
b)	Realize the hardware logic diagram to implement the following functions using PAL device.	4	4	1	1
	$F_1 = x_1 x_2 x_3' + x_1' x_2 x_3$ $F_2 = x_1' x_2' + x_1 x_2 x_3$				

Code No.: 22666

12. a)	Construct and draw the logic diagram for 32×4 PROM device.	4	1	2	3
b)	Analyze and compare the key characteristics of PROM device with reference to PLA and PAL devices.	4	3	2	3
13. a)	Design the following function generator using PROM device.	4	3	3	3
	$F(x) = x^2$ where x is a 3 bit unsigned binary number.				
b)	Derive the PLA programming table to realize the following Boolean expressions.	4	, 4	3	3
	$F_1(A, B, C) = (0, 1, 3, 4), F_2(A, B, C) = (1, 2, 3, 4, 5)$				
14. a)	Design a full adder using a PROM device.	4	3	2	1
b)	Analyse and bring out the differences between the processor and FPGA.	4	3	5	1
15. a)	2×1 Mux is the basic building block to realize LUT.	4	3	5	4
	Draw the block diagram of 2×1 Mux and also draw the logic circuit diagram of 2×1 Mux				
b)	Analyze and find the number of 4 input LUTs required to realize full adder.	4	2	5	4
16. a)	Which of the following functional descriptions can be realized by a single 4-input LUT in a typical FPGA? Justify your answer.	4	4	5	4
	(a) F = A'.B.C + B'.C' (b) F = (A.B + A'.B'). (C.D' + C'.D) (c) F = A.B.C + B'.D.E				
b)	Implement a full adder circuit using 4:1 multiplexers.	4	3	5	
17.	Answer any two of the following:				
a)	Realize 3-input LUT using 2-input LUTs and draw its logic diagram.	4	3	3	
b)	Draw the logic diagram of functional block architecture in CPLD.	4	4	4	
(c)	Implement the following Boolean function in FPGA.	4	3	5	
	$f(A, B, C, D) = \Sigma m(3, 5, 6, 9, 10, 12)$				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

(i	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%
